


Scientific Collaborations for Extreme-Scale Science

Lothar Bauerdick/Fermilab U.S. CMS Software and Computing Manager

- ★ Recent CMS Computing performance
 - ◆ 20M CPU hours and 4M jobs per month
 - ◆ 25k CPUs across O(50) centers in the U.S.
 - 4 PetaByte/mo data moved, connecting continents

High Energy Physics Challenges and Approaches

- → Huge technical and sociological challenges of world-wide collaborations
 - ★ computing throughput needs: computational, storage, network needs
 - ★ size + complexity: data, software libraries, analysis methods
 - → scientific apparatus w/ ~100M channels, Billions of measurements, simulations
 - thousands of individual researchers face the issues of complexity, accessibility, discoverability, usability, reproducibility of data and analysis workflows
 - ★ distributed nature of HEP scientific projects
 - a world-wide distributed collaboration of researchers and computing infrastructure
- Approach: Distributed High-Throughput Computing
 - ★ distributed computing services and infrastructure operations
 - ★ inclusive consortium of computing centers and scientific organizations
 - * sharing of computing resources, services, technologies, techniques
 - * also: need for tools for collaborative distributed scientific research
- ◆ Open Science Grid provides a framework for this approach for HEP
 - ★ LHC, other physics, mathematics, bioinformatics, biochemistry, genetics
- ◆ "20th century tools and infrastructure to solve 21st century challenges!"